DEFENSE ADVANCED RESEARCH PROJECTS AGENCY DEFENSE SCIENCES OFFICE (DSO) PLANNED PROCUREMENTS May 1998

PROGRAM DESCRIPTION	FUNDING	SCHEDULE	PROGRAM MGR
Mesoscale Machines for Military Applications: The objective of this program is to	N/A	BAA98-23	Dr. William Warren
demonstrate working mesoscopic machines that meet performance specifications of		Proposals due	DSO
interest to the Department of Defense (DoD). Mesoscopic machines are those		5/29/98	
machines that straddle the size range between MEMS and conventional machines.			
Choices for the machine should be justified based on performance advantages at the		Total program:	
mesoscopic scale as well as utility to the DoD. Innovative devices and design		3 years	
flexibility are encouraged, especially mesoscopic machines that provide considerable			
improvements over existing solutions or provide entirely new ones to military			
problems. Specific areas of interest are mesoscale machines for purification of water,			
purification of air, small amphibious machines, electrostatic machines, and meso-			
weapons.			
Optimized Portable Algorithms and Application Libraries (OPAAL) Initiative	\$4M	NSF	Dr. Anna Tsao
for Complex Physical Simulation: This program is aimed at the development and	combined	BAA98-64	DSO
application of methodologies for automated generation of high-performance, scaleable	DARPA and	Proposals due	Doo
codes for critical computational kernels. Approaches of interest should allow explicit	NSF funding	7/1/98	
mathematical expression and manipulation of application- and architecture-dependent	Tipi Tanding	77 17 5 0	
		Total program:	
		1 0	
		5 jeurs	
features of algorithms that impact runtime performance for broad classes of architectures and applications. Of particular interest are critical computational kernels having pervasive impact and general applicability in a broad variety of materials processing and other DoD-relevant simulation technologies, such as mesh generation and front capturing.		Total program: 3 years	

PROGRAM DESCRIPTION	FUNDING	SCHEDULE	PROGRAM MGR
Innovative Computational Mathematics for Physical Applications:	N/A	AFOSR	Dr. Anna Tsao,
This program seeks to develop and demonstrate substantive advances in the following		BAA 98-44	Dr. Dennis Healy
three technical areas: (1) physics based modeling and signal processing applied to		Proposals due	DSO
optimization of DoD sensor systems; (2) modeling, data analysis, or scalable high		9/30/98	
order numerical methods for applications in electromagnetics, sensing, and chemical or			
biological systems; and (3) development and application of mathematical formulations		Total program:	
enabling automatic compilation of scaleable, high-performance software libraries of		3 years	
key numerical kernels for DoD sensor applications. Projects must demonstrate			
significant mathematical innovation and the potential for high DoD payoff.			
Single Crystal Piezoelectrics for Electromechanical Transduction: This program	\$25M	BAA92-22	Dr. Wallace Smith
exploits recent research results demonstrating that single crystals of relaxor		Proposals due	DSO
piezoelectrics exhibit electromechanical coupling exceeding 90% (compared to about		10/9/98	
75% in conventional piezoceramics) and strain levels exceeding 1% (compared to			
about 0.1% in conventional piezoceramics), providing an order of magnitude		Total program:	
enhancement in solid-state electromechanical actuator performance. The initial phase		4-5 years	
of 2 to 3 year projects will concentrate on devising innovative growth methods,			
understanding microscopic origins optimizing composition, properties, and processing,			
and identifying and demonstrating on a laboratory scale materials performance in			
applications addressable with initially produced samples. A second phase of 2 to 3			
year projects will scale up materials production methods and demonstrate performance			
in selected high-impact defense applications ranging from helicopter rotor control,			
through wing shape control, to naval sonar systems.			

PROGRAM DESCRIPTION	FUNDING	SCHEDULE	PROGRAM MGR
Unconventional Pathogen Countermeasures: The purpose of this program is to	\$30M	BAA	CDR Shaun Jones
develop and demonstrate defensive technologies which afford the greatest protection	Ψ301 ν1	3QFY98	DSO
to primarily uniformed warfighters and the defense personnel who support them		54170	
during US military operations. Ideally, these defenses will be instantly available or			
emplaced countermeasures that can defeat biological threats as they enter the body			
and before they reach and attack target cells and tissues. The focus of this program is		Total program:	
to develop revolutionary, broad-spectrum, medical countermeasures against		3 years	
significantly pathogenic micro-organisms and/or their pathogenic products. These		J	
countermeasures should be versatile enough to eliminate biological threats, whether			
from natural sources or modified through bio-engineering or other manipulation.			
Advanced Diagnostics: The objective of this program is to provide the capability to	\$10M	BAA	Dr. Stephen S.
detect, in clinical samples or in the body, in real-time and in the absence of		3QFY98	Morse
recognizable signs and symptoms (when pathogen numbers are still low), the presence			DSO
of infection by any significant pathogen. Specific areas of interest include but are not			
limited to: (1) multi-agent diagnostics capable of simultaneously identifying a broad			
range of pathogens (infectious agents and/or their products); (2) strategies for			
identifying both known and presently unknown or bio-engineered pathogens (e.g.,		Total program:	
diagnostic approaches based upon fundamental, critical mechanisms of pathogenesis,		3 years	
targets shared by classes of pathogens, or early host responses to infection); (3)			
detection and identification of biosignatures or biomarkers that could serve usefully to			
indicate exposure or infection and provide useful diagnostic or prognostic information,			
especially early in infection; (4) capabilities for continuous monitoring or immediate			
recognition of infection in the body; and (5) wearable diagnostics for noninvasive,			
broad-spectrum detection of infection in the body.			

PROGRAM DESCRIPTION	FUNDING	SCHEDULE	PROGRAM MGR
Moletronics: The objective of this program is to demonstrate the integration of	\$15M	BAA	Dr. Bruce Gnade
molecular components into scalable, functional devices that are interconnected to the		3Q or 4QFY98	ETO
outside world. The long-term goal is to provide moderate computational power in an			Dr. William Warren
extremely small, low-power format – a "Pentium on a pin-head." The immediate		Total program:	DSO
program has two specific goals: (1) demonstrate a functional 16-bit molecular memory		2 years	
connected to the outside world at a density of 10 ¹² bits/mm ³ that is capable of			
performing a storage function that is bistable, and reversibly driven from one state to			
the other by an outside signal at room temperature; and (2) demonstrate two			
interconnected molecular logic gates (10nm x 4nm in size) connected to the outside			
world that produce the correct truth table.			
Mesoscopic Integrated Conformal Electronics (MICE): The purpose of this	\$40M	BAA	Dr. William Warren
program is to demonstrate the rapid prototyping and manufacturing of miniaturized		3Q or 4QFY98	DSO
and rugged mesoscopic electronics on any surface (silicon, glass, plastics, metals,			
ceramics, etc.) through the 3-dimensional integration of passive components (resistors,		Total program:	
capacitors, inductors, high gain antennae, and interconnects) and active components		4 years	
(batteries, etc.) using a direct-write (mask-less) approach. The MICE direct-write			
machine goal is to develop a single, compact, commercial-off-the-shelf, rapid (hours)			
prototyping/manufacturing computer-aided-design/computer-aided-machine			
(CAD/CAM) that will deposit a wide variety of functional materials (conductors,			
insulators, ferrites, ruthenates, metals, ferroelectrics, glasses, polymers, etc.) for			
customized, robust, mesoscale electronic devices in a 3D fashion at low-substrate			
temperatures in a conformal manner on virtually any substrate. It has been determined			
that a "credit card"-sized Global Positioning System receiver and transmitter will be			
the application driving the direct-write tool development for this program. These			
direct-write mesoscopic electronic devices will be integrated with the physical			
structure (e.g., a plastic "credit card") on which the electronic systems will be used;			
there will be no need for a conventional printed wiring board.			

PROGRAM DESCRIPTION	FUNDING	SCHEDULE	PROGRAM MGR
Next Generation Technologies for Environmental Bioagent Identification: This	\$15M	BAA	Dr. Mildred Donlon
program has the goal of developing rapid, inexpensive and highly accurate		4QFY98	DSO
environmental detection and identification technologies for biological agents. The			
initial phase of 2 to 3 year projects will focus on development of detection and		Total Program:	
identification technologies that do <u>not</u> use antibodies, DNA, or liquids in the process		3-4 years	
of identifying environmental biological agents (spores, vegetative bacteria, viruses,		J	
toxins, etc.). Emphasis will be placed on miniaturization capability of the technology,			
low cost, low power, and high sensitivity. A second phase will involve teaming of			
successful technologies, integration with air samplers into complete bio-sensor			
systems, and testing in realistic environments.			
systems, and testing in realistic environments.			
Biomimetic Systems: This program will identify and then mimic locomotory and	\$15M	BAA	Dr. Alan Rudolph
sensory biological systems that show superior performance and stability. Projects will	Ψ151 V1	2QFY99	DSO
involve the detailed study of biological systems for control, design, and fabrication		2Q1 1))	DSO
		Total programs	
features and then construction of abiotic or hybrid prototype platforms. Candidate		Total program:	
systems to be evaluated include (but are not limited to) active camouflage,		3 years	
optical/infrared/acoustic detection, resonant insect flight, and extremophile strategies			
used by small invertebrates. Prototypes of biomimetic systems will be developed that			
will demonstrate enhanced capabilities for Defense operations including sensing,			
surveillance, and mine countermeasures.			